use std::mem; use syntax::ast::{Expr, ExprParen, Lit, Stmt, TokenTree, TtDelimited, TtToken}; use syntax::codemap::Span; use syntax::ext::base::ExtCtxt; use syntax::parse; use syntax::parse::parser::Parser as RustParser; use syntax::parse::token::{self, DelimToken}; use syntax::ptr::P; use super::render::{Escape, Renderer}; macro_rules! dollar { () => (TtToken(_, token::Dollar)) } macro_rules! dot { () => (TtToken(_, token::Dot)) } macro_rules! eq { () => (TtToken(_, token::Eq)) } macro_rules! not { () => (TtToken(_, token::Not)) } macro_rules! question { () => (TtToken(_, token::Question)) } macro_rules! semi { () => (TtToken(_, token::Semi)) } macro_rules! minus { () => (TtToken(_, token::BinOp(token::Minus))) } macro_rules! slash { () => (TtToken(_, token::BinOp(token::Slash))) } macro_rules! literal { () => (TtToken(_, token::Literal(..))) } macro_rules! ident { ($x:pat) => (ident!(_, $x)); ($sp:pat, $x:pat) => (TtToken($sp, token::Ident($x, token::IdentStyle::Plain))) } pub fn parse(cx: &ExtCtxt, input: &[TokenTree], sp: Span) -> P<Expr> { let mut parser = Parser { in_attr: false, input: input, span: sp, render: Renderer::new(cx), }; parser.markups(); parser.into_render().into_expr() } struct Parser<'cx, 's: 'cx, 'i> { in_attr: bool, input: &'i [TokenTree], span: Span, render: Renderer<'cx, 's>, } impl<'cx, 's, 'i> Parser<'cx, 's, 'i> { /// Finalize the `Parser`, returning the `Renderer` underneath. fn into_render(self) -> Renderer<'cx, 's> { let Parser { render, .. } = self; render } /// Consume `n` items from the input. fn shift(&mut self, n: usize) { self.input = &self.input[n..]; } /// Construct a Rust AST parser from the given token tree. fn new_rust_parser(&self, tts: Vec<TokenTree>) -> RustParser<'s> { parse::tts_to_parser(self.render.cx.parse_sess, tts, self.render.cx.cfg.clone()) } fn markups(&mut self) { loop { match self.input { [] => return, [semi!(), ..] => self.shift(1), [_, ..] => if !self.markup() { return }, } } } fn markup(&mut self) -> bool { match self.input { // Literal [minus!(), ref tt @ literal!(), ..] => { self.shift(2); self.literal(tt, true) }, [ref tt @ literal!(), ..] => { self.shift(1); self.literal(tt, false) }, // If [dollar!(), ident!(sp, name), ..] if name.as_str() == "if" => { self.shift(2); self.if_expr(sp); }, // Splice [ref tt @ dollar!(), dollar!(), ..] => { self.shift(2); let expr = self.splice(tt.get_span()); self.render.splice(expr, Escape::PassThru); }, [ref tt @ dollar!(), ..] => { self.shift(1); let expr = self.splice(tt.get_span()); self.render.splice(expr, Escape::Escape); }, // Element [ident!(sp, name), ..] => { self.shift(1); self.element(sp, name.as_str()) }, // Block [TtDelimited(sp, ref d), ..] if d.delim == token::DelimToken::Brace => { self.shift(1); let stmts = self.block(sp, &d.tts); self.render.push_stmts(stmts); }, // ??? _ => { if let [ref tt, ..] = self.input { self.render.cx.span_err(tt.get_span(), "invalid syntax"); } else { self.render.cx.span_err(self.span, "unexpected end of block"); } return false; }, } true } fn literal(&mut self, tt: &TokenTree, minus: bool) { let lit = self.new_rust_parser(vec![tt.clone()]).parse_lit(); match lit_to_string(self.render.cx, lit, minus) { Some(s) => self.render.string(&s, Escape::Escape), None => {}, } } fn if_expr(&mut self, sp: Span) { // Parse the initial if let mut cond_tts = vec![]; let if_body; loop { match self.input { [TtDelimited(sp, ref d), ..] if d.delim == DelimToken::Brace => { self.shift(1); if_body = self.block(sp, &d.tts); break; }, [ref tt, ..] => { self.shift(1); cond_tts.push(tt.clone()); }, [] => self.render.cx.span_fatal(sp, "expected body for this $if"), }} let if_cond = self.new_rust_parser(cond_tts).parse_expr(); // Parse the (optional) else let else_body = match self.input { [dollar!(), ident!(else_), ..] if else_.as_str() == "else" => { self.shift(2); match self.input { [ident!(sp, if_), ..] if if_.as_str() == "if" => { self.shift(1); let else_body = { // Parse an if expression, but capture the result // rather than emitting it right away let mut render = self.render.fork(); mem::swap(&mut self.render, &mut render); self.if_expr(sp); mem::swap(&mut self.render, &mut render); render.into_stmts() }; Some(else_body) }, [TtDelimited(sp, ref d), ..] if d.delim == DelimToken::Brace => { self.shift(1); Some(self.block(sp, &d.tts)) }, _ => self.render.cx.span_fatal(sp, "expected body for this $else"), } }, _ => None, }; self.render.emit_if(if_cond, if_body, else_body); } fn splice(&mut self, sp: Span) -> P<Expr> { let mut tts = vec![]; // First, munch a single token tree if let [ref tt, ..] = self.input { self.shift(1); tts.push(tt.clone()); } loop { match self.input { // Munch attribute lookups e.g. `$person.address.street` [ref dot @ dot!(), ref ident @ ident!(_), ..] => { self.shift(2); tts.push(dot.clone()); tts.push(ident.clone()); }, // Munch function calls `()` and indexing operations `[]` [TtDelimited(sp, ref d), ..] if d.delim != token::DelimToken::Brace => { self.shift(1); tts.push(TtDelimited(sp, d.clone())); }, _ => break, } } if tts.is_empty() { self.render.cx.span_fatal(sp, "expected expression for this splice"); } else { self.new_rust_parser(tts).parse_expr() } } fn element(&mut self, sp: Span, name: &str) { if self.in_attr { self.render.cx.span_err(sp, "unexpected element, you silly bumpkin"); return; } self.render.element_open_start(name); self.attrs(); self.render.element_open_end(); if let [slash!(), ..] = self.input { self.shift(1); } else { self.markup(); self.render.element_close(name); } } fn attrs(&mut self) { loop { match self.input { [ident!(name), eq!(), ..] => { // Non-empty attribute self.shift(2); self.render.attribute_start(name.as_str()); { // Parse a value under an attribute context let mut in_attr = true; mem::swap(&mut self.in_attr, &mut in_attr); self.markup(); mem::swap(&mut self.in_attr, &mut in_attr); } self.render.attribute_end(); }, [ident!(name), question!(), ..] => { // Empty attribute self.shift(2); if let [ref tt @ eq!(), ..] = self.input { // Toggle the attribute based on a boolean expression self.shift(1); let cond = self.splice(tt.get_span()); // Silence "unnecessary parentheses" warnings let cond = strip_outer_parens(cond); let body = { let mut r = self.render.fork(); r.attribute_empty(name.as_str()); r.into_stmts() }; self.render.emit_if(cond, body, None); } else { // Write the attribute unconditionally self.render.attribute_empty(name.as_str()); } }, _ => return, }} } fn block(&mut self, sp: Span, tts: &[TokenTree]) -> Vec<P<Stmt>> { let mut parse = Parser { in_attr: self.in_attr, input: tts, span: sp, render: self.render.fork(), }; parse.markups(); parse.into_render().into_stmts() } } /// Convert a literal to a string. fn lit_to_string(cx: &ExtCtxt, lit: Lit, minus: bool) -> Option<String> { use syntax::ast::Lit_::*; let mut result = String::new(); if minus { result.push('-'); } match lit.node { LitStr(s, _) => result.push_str(&s), LitBinary(..) | LitByte(..) => { cx.span_err(lit.span, "cannot splice binary data"); return None; }, LitChar(c) => result.push(c), LitInt(x, _) => result.push_str(&x.to_string()), LitFloat(s, _) | LitFloatUnsuffixed(s) => result.push_str(&s), LitBool(b) => result.push_str(if b { "true" } else { "false" }), }; Some(result) } /// If the expression is wrapped in parentheses, strip them off. fn strip_outer_parens(expr: P<Expr>) -> P<Expr> { expr.and_then(|expr| match expr { Expr { node: ExprParen(inner), .. } => inner, expr => P(expr), }) }