use std::mem; use syntax::ast::LitKind; use syntax::codemap::Span; use syntax::ext::base::ExtCtxt; use syntax::parse; use syntax::parse::token::{BinOpToken, DelimToken, Token}; use syntax::print::pprust; use syntax::symbol::keywords; use syntax::tokenstream::{Delimited, TokenStream, TokenTree}; use super::render::Renderer; use super::ParseResult; macro_rules! at { () => (TokenTree::Token(_, Token::At)) } macro_rules! dot { () => (TokenTree::Token(_, Token::Dot)) } macro_rules! eq { () => (TokenTree::Token(_, Token::Eq)) } macro_rules! pound { () => (TokenTree::Token(_, Token::Pound)) } macro_rules! question { () => (TokenTree::Token(_, Token::Question)) } macro_rules! semi { () => (TokenTree::Token(_, Token::Semi)) } macro_rules! colon { () => (TokenTree::Token(_, Token::Colon)) } macro_rules! comma { () => (TokenTree::Token(_, Token::Comma)) } macro_rules! fat_arrow { () => (TokenTree::Token(_, Token::FatArrow)) } macro_rules! minus { () => (TokenTree::Token(_, Token::BinOp(BinOpToken::Minus))) } macro_rules! slash { () => (TokenTree::Token(_, Token::BinOp(BinOpToken::Slash))) } macro_rules! literal { () => (TokenTree::Token(_, Token::Literal(..))) } macro_rules! ident { ($sp:pat, $x:pat) => (TokenTree::Token($sp, Token::Ident($x))) } macro_rules! keyword { ($sp:pat, $x:ident) => (TokenTree::Token($sp, ref $x @ Token::Ident(..))) } pub fn parse(cx: &ExtCtxt, sp: Span, input: &[TokenTree]) -> ParseResult<Vec<TokenTree>> { let mut render = Renderer::new(cx); Parser { cx, in_attr: false, input: input, span: sp, }.markups(&mut render)?; // Heuristic: the size of the resulting markup tends to correlate with the // code size of the template itself let size_hint = pprust::tts_to_string(input).len(); Ok(render.into_expr(size_hint).into_trees().collect()) } struct Parser<'cx, 'a: 'cx, 'i> { cx: &'cx ExtCtxt<'a>, in_attr: bool, input: &'i [TokenTree], span: Span, } impl<'cx, 'a, 'i> Parser<'cx, 'a, 'i> { /// Consumes `n` items from the input. fn shift(&mut self, n: usize) { self.input = &self.input[n..]; } /// Attaches an error message to the span and returns `Err`. fn error<T>(&self, span: Span, message: &str) -> ParseResult<T> { self.cx.span_err(span, message); Err(()) } /// Parses and renders multiple blocks of markup. fn markups(&mut self, render: &mut Renderer) -> ParseResult<()> { loop { match *self.input { [] => return Ok(()), [semi!(), ..] => self.shift(1), [_, ..] => self.markup(render)?, } } } /// Parses and renders a single block of markup. fn markup(&mut self, render: &mut Renderer) -> ParseResult<()> { match *self.input { // Literal [ref tt @ literal!(), ..] => { self.shift(1); self.literal(tt, render)?; }, // If [at!(), keyword!(sp, k), ..] if k.is_keyword(keywords::If) => { self.shift(2); self.if_expr(sp, render)?; }, // While [at!(), keyword!(sp, k), ..] if k.is_keyword(keywords::While) => { self.shift(2); self.while_expr(sp, render)?; }, // For [at!(), keyword!(sp, k), ..] if k.is_keyword(keywords::For) => { self.shift(2); self.for_expr(sp, render)?; }, // Match [at!(), keyword!(sp, k), ..] if k.is_keyword(keywords::Match) => { self.shift(2); self.match_expr(sp, render)?; }, // Let [at!(), keyword!(sp, k), ..] if k.is_keyword(keywords::Let) => { self.shift(2); self.let_expr(sp, render)?; } // Element [ident!(sp, _), ..] => { let name = self.namespaced_name().unwrap(); self.element(sp, &name, render)?; }, // Splice [TokenTree::Delimited(_, ref d), ..] if d.delim == DelimToken::Paren => { self.shift(1); render.splice(d.stream()); } // Block [TokenTree::Delimited(sp, ref d), ..] if d.delim == DelimToken::Brace => { self.shift(1); Parser { cx: self.cx, in_attr: self.in_attr, input: &d.stream().into_trees().collect::<Vec<_>>(), span: sp, }.markups(render)?; }, // ??? _ => { if let [ref tt, ..] = *self.input { return self.error(tt.span(), "invalid syntax"); } else { return self.error(self.span, "unexpected end of block"); } }, } Ok(()) } /// Parses and renders a literal string. fn literal(&mut self, tt: &TokenTree, render: &mut Renderer) -> ParseResult<()> { let mut rust_parser = parse::stream_to_parser(self.cx.parse_sess, tt.clone().into()); let lit = rust_parser.parse_lit().map_err(|mut e| e.emit())?; if let LitKind::Str(s, _) = lit.node { render.string(&s.as_str()); Ok(()) } else { return self.error(lit.span, "literal strings must be surrounded by quotes (\"like this\")") } } /// Parses and renders an `@if` expression. /// /// The leading `@if` should already be consumed. fn if_expr(&mut self, sp: Span, render: &mut Renderer) -> ParseResult<()> { // Parse the initial if let mut if_cond = vec![]; let if_body; loop { match *self.input { [TokenTree::Delimited(sp, ref d), ..] if d.delim == DelimToken::Brace => { self.shift(1); if_body = self.block(sp, d.stream(), render)?; break; }, [ref tt, ..] => { self.shift(1); if_cond.push(tt.clone()); }, [] => return self.error(sp, "expected body for this @if"), }} // Parse the (optional) @else let else_body = match *self.input { [at!(), keyword!(_, k), ..] if k.is_keyword(keywords::Else) => { self.shift(2); match *self.input { [keyword!(sp, k), ..] if k.is_keyword(keywords::If) => { self.shift(1); let mut render = render.fork(); self.if_expr(sp, &mut render)?; Some(render.into_stmts()) }, [TokenTree::Delimited(sp, ref d), ..] if d.delim == DelimToken::Brace => { self.shift(1); Some(self.block(sp, d.stream(), render)?) }, _ => return self.error(sp, "expected body for this @else"), } }, _ => None, }; render.emit_if(if_cond.into_iter().collect(), if_body, else_body); Ok(()) } /// Parses and renders an `@while` expression. /// /// The leading `@while` should already be consumed. fn while_expr(&mut self, sp: Span, render: &mut Renderer) -> ParseResult<()> { let mut cond = vec![]; let body; loop { match *self.input { [TokenTree::Delimited(sp, ref d), ..] if d.delim == DelimToken::Brace => { self.shift(1); body = self.block(sp, d.stream(), render)?; break; }, [ref tt, ..] => { self.shift(1); cond.push(tt.clone()); }, [] => return self.error(sp, "expected body for this @while"), }} render.emit_while(cond.into_iter().collect(), body); Ok(()) } /// Parses and renders a `@for` expression. /// /// The leading `@for` should already be consumed. fn for_expr(&mut self, sp: Span, render: &mut Renderer) -> ParseResult<()> { let mut pattern = vec![]; loop { match *self.input { [keyword!(_, k), ..] if k.is_keyword(keywords::In) => { self.shift(1); break; }, [ref tt, ..] => { self.shift(1); pattern.push(tt.clone()); }, _ => return self.error(sp, "invalid @for"), }} let mut iterable = vec![]; let body; loop { match *self.input { [TokenTree::Delimited(sp, ref d), ..] if d.delim == DelimToken::Brace => { self.shift(1); body = self.block(sp, d.stream(), render)?; break; }, [ref tt, ..] => { self.shift(1); iterable.push(tt.clone()); }, _ => return self.error(sp, "invalid @for"), }} render.emit_for(pattern.into_iter().collect(), iterable.into_iter().collect(), body); Ok(()) } /// Parses and renders a `@match` expression. /// /// The leading `@match` should already be consumed. fn match_expr(&mut self, sp: Span, render: &mut Renderer) -> ParseResult<()> { // Parse the initial match let mut match_var = vec![]; let match_bodies; loop { match *self.input { [TokenTree::Delimited(sp, ref d), ..] if d.delim == DelimToken::Brace => { self.shift(1); match_bodies = Parser { cx: self.cx, in_attr: self.in_attr, input: &d.stream().into_trees().collect::<Vec<_>>(), span: sp, }.match_bodies(render)?; break; }, [ref tt, ..] => { self.shift(1); match_var.push(tt.clone()); }, [] => return self.error(sp, "expected body for this @match"), }} render.emit_match(match_var.into_iter().collect(), match_bodies.into_iter().collect()); Ok(()) } fn match_bodies(&mut self, render: &mut Renderer) -> ParseResult<Vec<TokenTree>> { let mut bodies = Vec::new(); loop { match *self.input { [] => break, [ref tt @ comma!(), ..] => { self.shift(1); bodies.push(tt.clone()); }, [ref tt, ..] => bodies.append(&mut self.match_body(tt.span(), render)?), }} Ok(bodies) } fn match_body(&mut self, sp: Span, render: &mut Renderer) -> ParseResult<Vec<TokenTree>> { let mut body = vec![]; loop { match *self.input { [ref tt @ fat_arrow!(), ..] => { self.shift(1); body.push(tt.clone()); break; }, [ref tt, ..] => { self.shift(1); body.push(tt.clone()); }, _ => return self.error(sp, "invalid @match pattern"), }} let mut expr = Vec::new(); loop { match *self.input { [TokenTree::Delimited(sp, ref d), ..] if d.delim == DelimToken::Brace => { if expr.is_empty() { self.shift(1); expr = self.block(sp, d.stream(), render)?.into_trees().collect(); break; } else { self.shift(1); expr.push(TokenTree::Delimited(sp, d.clone())); } }, [comma!(), ..] | [] => { if expr.is_empty() { return self.error(sp, "expected body for this @match arm"); } else { expr = self.block(sp, expr.into_iter().collect(), render)?.into_trees().collect(); break; } }, [ref tt, ..] => { self.shift(1); expr.push(tt.clone()); }, }} body.push(TokenTree::Delimited(sp, Delimited { delim: DelimToken::Brace, tts: expr.into_iter().collect::<TokenStream>().into(), })); Ok(body) } /// Parses and renders a `@let` expression. /// /// The leading `@let` should already be consumed. fn let_expr(&mut self, sp: Span, render: &mut Renderer) -> ParseResult<()> { let mut pattern = vec![]; loop { match *self.input { [eq!(), ..] => { self.shift(1); break; }, [ref tt, ..] => { self.shift(1); pattern.push(tt.clone()); }, _ => return self.error(sp, "invalid @let"), }} let mut rhs = vec![]; let body; loop { match *self.input { [TokenTree::Delimited(sp, ref d), ..] if d.delim == DelimToken::Brace => { self.shift(1); body = self.block(sp, d.stream(), render)?; break; }, [ref tt, ..] => { self.shift(1); rhs.push(tt.clone()); }, _ => return self.error(sp, "invalid @let"), }} render.emit_let(pattern.into_iter().collect(), rhs.into_iter().collect(), body); Ok(()) } /// Parses and renders an element node. /// /// The element name should already be consumed. fn element(&mut self, sp: Span, name: &str, render: &mut Renderer) -> ParseResult<()> { if self.in_attr { return self.error(sp, "unexpected element, you silly bumpkin"); } render.element_open_start(name); self.attrs(render)?; render.element_open_end(); if let [slash!(), ..] = *self.input { self.shift(1); } else { self.markup(render)?; render.element_close(name); } Ok(()) } /// Parses and renders the attributes of an element. fn attrs(&mut self, render: &mut Renderer) -> ParseResult<()> { let mut classes_static = Vec::new(); let mut classes_toggled = Vec::new(); let mut ids = Vec::new(); loop { let old_input = self.input; let maybe_name = self.namespaced_name(); match (maybe_name, self.input) { (Ok(name), &[eq!(), ..]) => { // Non-empty attribute self.shift(1); render.attribute_start(&name); { // Parse a value under an attribute context let mut in_attr = true; mem::swap(&mut self.in_attr, &mut in_attr); self.markup(render)?; mem::swap(&mut self.in_attr, &mut in_attr); } render.attribute_end(); }, (Ok(name), &[question!(), ..]) => { // Empty attribute self.shift(1); match *self.input { [TokenTree::Delimited(_, ref d), ..] if d.delim == DelimToken::Bracket => { // Toggle the attribute based on a boolean expression self.shift(1); let cond = d.stream(); let body = { let mut render = render.fork(); render.attribute_empty(&name); render.into_stmts() }; render.emit_if(cond, body, None); }, _ => { // Write the attribute unconditionally render.attribute_empty(&name); }, } }, (Err(_), &[dot!(), ident!(_, _), ..]) => { // Class shorthand self.shift(1); let class_name = self.name().unwrap(); match *self.input { [TokenTree::Delimited(_, ref d), ..] if d.delim == DelimToken::Bracket => { // Toggle the class based on a boolean expression self.shift(1); let cond = d.stream(); classes_toggled.push((cond, class_name)); }, // Emit the class unconditionally _ => classes_static.push(class_name), } }, (Err(_), &[pound!(), ident!(_, _), ..]) => { // ID shorthand self.shift(1); ids.push(self.name().unwrap()); }, _ => { self.input = old_input; break; }, } } if !classes_static.is_empty() || !classes_toggled.is_empty() { render.attribute_start("class"); render.string(&classes_static.join(" ")); for (i, (cond, mut class_name)) in classes_toggled.into_iter().enumerate() { // If a class comes first in the list, then it shouldn't be // prefixed by a space if i > 0 || !classes_static.is_empty() { class_name = format!(" {}", class_name); } let body = { let mut render = render.fork(); render.string(&class_name); render.into_stmts() }; render.emit_if(cond, body, None); } render.attribute_end(); } if !ids.is_empty() { render.attribute_start("id"); render.string(&ids.join(" ")); render.attribute_end(); } Ok(()) } /// Parses an identifier, without dealing with namespaces. fn name(&mut self) -> ParseResult<String> { let mut s = match *self.input { [ident!(_, name), ..] => { self.shift(1); String::from(&name.name.as_str() as &str) }, _ => return Err(()), }; let mut expect_ident = false; loop { expect_ident = match *self.input { [minus!(), ..] => { self.shift(1); s.push('-'); true }, [ident!(_, name), ..] if expect_ident => { self.shift(1); s.push_str(&name.name.as_str()); false }, _ => break, }; } Ok(s) } /// Parses a HTML element or attribute name, along with a namespace /// if necessary. fn namespaced_name(&mut self) -> ParseResult<String> { let mut s = self.name()?; if let [colon!(), ident!(_, _), ..] = *self.input { self.shift(1); s.push(':'); s.push_str(&self.name().unwrap()); } Ok(s) } /// Parses the given token tree, returning a vector of statements. fn block(&mut self, sp: Span, tts: TokenStream, render: &mut Renderer) -> ParseResult<TokenStream> { let mut render = render.fork(); let mut parse = Parser { cx: self.cx, in_attr: self.in_attr, input: &tts.into_trees().collect::<Vec<_>>(), span: sp, }; parse.markups(&mut render)?; Ok(render.into_stmts()) } }