use std::mem; use std::rc::Rc; use syntax::ast::{Expr, ExprKind, Lit, LitKind, Stmt}; use syntax::ext::quote::rt::ToTokens; use syntax::codemap::Span; use syntax::errors::{DiagnosticBuilder, FatalError}; use syntax::ext::base::ExtCtxt; use syntax::parse; use syntax::parse::parser::Parser as RustParser; use syntax::parse::token::{BinOpToken, DelimToken, Token, Lit as LitToken}; use syntax::parse::token::keywords; use syntax::ptr::P; use syntax::tokenstream::{Delimited, TokenTree}; use super::render::Renderer; use super::PResult; macro_rules! error { ($cx:expr, $sp:expr, $msg:expr) => ({ $cx.span_err($sp, $msg); return Err(::syntax::errors::FatalError); }) } macro_rules! parse_error { ($self_:expr, $sp:expr, $msg:expr) => (error!($self_.render.cx, $sp, $msg)) } macro_rules! at { () => (TokenTree::Token(_, Token::At)) } macro_rules! dot { () => (TokenTree::Token(_, Token::Dot)) } macro_rules! modsep { () => (TokenTree::Token(_, Token::ModSep)) } macro_rules! eq { () => (TokenTree::Token(_, Token::Eq)) } macro_rules! not { () => (TokenTree::Token(_, Token::Not)) } macro_rules! pound { () => (TokenTree::Token(_, Token::Pound)) } macro_rules! question { () => (TokenTree::Token(_, Token::Question)) } macro_rules! semi { () => (TokenTree::Token(_, Token::Semi)) } macro_rules! colon { () => (TokenTree::Token(_, Token::Colon)) } macro_rules! comma { () => (TokenTree::Token(_, Token::Comma)) } macro_rules! fat_arrow { () => (TokenTree::Token(_, Token::FatArrow)) } macro_rules! minus { () => (TokenTree::Token(_, Token::BinOp(BinOpToken::Minus))) } macro_rules! slash { () => (TokenTree::Token(_, Token::BinOp(BinOpToken::Slash))) } macro_rules! caret { () => (TokenTree::Token(_, Token::BinOp(BinOpToken::Caret))) } macro_rules! literal { () => (TokenTree::Token(_, Token::Literal(..))) } macro_rules! integer { () => (TokenTree::Token(_, Token::Literal(LitToken::Integer(_), _))) } macro_rules! ident { ($sp:pat, $x:pat) => (TokenTree::Token($sp, Token::Ident($x))) } macro_rules! substnt { ($sp:pat, $x:pat) => (TokenTree::Token($sp, Token::SubstNt($x))) } macro_rules! keyword { ($sp:pat, $x:ident) => (TokenTree::Token($sp, ref $x @ Token::Ident(..))) } pub fn parse(cx: &ExtCtxt, sp: Span, write: &[TokenTree], input: &[TokenTree]) -> PResult<P<Expr>> { let mut parser = Parser { in_attr: false, input: input, span: sp, render: Renderer::new(cx), }; parser.markups()?; Ok(parser.into_render().into_expr(write.to_vec())) } pub fn split_comma<'a>(cx: &ExtCtxt, sp: Span, mac_name: &str, args: &'a [TokenTree]) -> PResult<(&'a [TokenTree], &'a [TokenTree])> { fn is_comma(t: &TokenTree) -> bool { match *t { TokenTree::Token(_, Token::Comma) => true, _ => false, } } match args.iter().position(is_comma) { Some(i) => Ok((&args[..i], &args[1+i..])), None => error!(cx, sp, &format!("expected two arguments to `{}!`", mac_name)), } } struct Parser<'cx, 'a: 'cx, 'i> { in_attr: bool, input: &'i [TokenTree], span: Span, render: Renderer<'cx, 'a>, } impl<'cx, 'a, 'i> Parser<'cx, 'a, 'i> { /// Finalizes the `Parser`, returning the `Renderer` underneath. fn into_render(self) -> Renderer<'cx, 'a> { let Parser { render, .. } = self; render } /// Consumes `n` items from the input. fn shift(&mut self, n: usize) { self.input = &self.input[n..]; } /// Constructs a Rust AST parser from the given token tree. fn with_rust_parser<F, T>(&self, tts: Vec<TokenTree>, callback: F) -> PResult<T> where F: FnOnce(&mut RustParser<'cx>) -> Result<T, DiagnosticBuilder<'cx>> { let mut parser = parse::tts_to_parser(self.render.cx.parse_sess, tts, self.render.cx.cfg.clone()); let result = callback(&mut parser).map_err(|mut e| { e.emit(); FatalError }); // Make sure all tokens were consumed if parser.token != Token::Eof { let token = parser.this_token_to_string(); self.render.cx.span_err(parser.span, &format!("unexpected token: `{}`", token)); } result } /// Parses and renders multiple blocks of markup. fn markups(&mut self) -> PResult<()> { loop { match *self.input { [] => return Ok(()), [semi!(), ..] => self.shift(1), [_, ..] => self.markup()?, } } } /// Parses and renders a single block of markup. fn markup(&mut self) -> PResult<()> { match *self.input { // Literal [minus!(), ref tt @ literal!(), ..] => { self.shift(2); self.literal(tt, true)?; }, [ref tt @ literal!(), ..] => { self.shift(1); self.literal(tt, false)?; }, // If [at!(), keyword!(sp, k), ..] if k.is_keyword(keywords::If) => { self.shift(2); self.if_expr(sp)?; }, // For [at!(), keyword!(sp, k), ..] if k.is_keyword(keywords::For) => { self.shift(2); self.for_expr(sp)?; }, // Match [at!(), keyword!(sp, k), ..] if k.is_keyword(keywords::Match) => { self.shift(2); self.match_expr(sp)?; }, // Call [at!(), ident!(sp, name), ..] if name.name.as_str() == "call" => { self.shift(2); let func = self.splice(sp)?; self.render.emit_call(func); }, // Splice [ref tt @ caret!(), ..] => { self.shift(1); let expr = self.splice(tt.get_span())?; self.render.splice(expr); }, // Element [ident!(sp, _), ..] => { let name = self.name()?; self.element(sp, &name)?; }, // Block [TokenTree::Delimited(_, ref d), ..] if d.delim == DelimToken::Brace => { self.shift(1); { // Parse the contents of the block, emitting the // result inline let mut i = &*d.tts; mem::swap(&mut self.input, &mut i); self.markups()?; mem::swap(&mut self.input, &mut i); } }, // ??? _ => { if let [ref tt, ..] = *self.input { parse_error!(self, tt.get_span(), "invalid syntax"); } else { parse_error!(self, self.span, "unexpected end of block"); } }, } Ok(()) } /// Parses and renders a literal string or number. fn literal(&mut self, tt: &TokenTree, minus: bool) -> PResult<()> { let lit = self.with_rust_parser(vec![tt.clone()], RustParser::parse_lit)?; let s = lit_to_string(self.render.cx, lit, minus)?; self.render.string(&s); Ok(()) } /// Parses and renders an `@if` expression. /// /// The leading `@if` should already be consumed. fn if_expr(&mut self, sp: Span) -> PResult<()> { // Parse the initial if let mut if_cond = vec![]; let if_body; loop { match *self.input { [TokenTree::Delimited(sp, ref d), ..] if d.delim == DelimToken::Brace => { self.shift(1); if_body = self.block(sp, &d.tts)?; break; }, [ref tt, ..] => { self.shift(1); if_cond.push(tt.clone()); }, [] => parse_error!(self, sp, "expected body for this @if"), }} // Parse the (optional) @else let else_body = match *self.input { [at!(), keyword!(_, k), ..] if k.is_keyword(keywords::Else) => { self.shift(2); match *self.input { [keyword!(sp, k), ..] if k.is_keyword(keywords::If) => { self.shift(1); let else_body = { // Parse an if expression, but capture the result // rather than emitting it right away let mut r = self.render.fork(); mem::swap(&mut self.render, &mut r); self.if_expr(sp)?; mem::swap(&mut self.render, &mut r); r.into_stmts() }; Some(else_body) }, [TokenTree::Delimited(sp, ref d), ..] if d.delim == DelimToken::Brace => { self.shift(1); Some(self.block(sp, &d.tts)?) }, _ => parse_error!(self, sp, "expected body for this @else"), } }, _ => None, }; self.render.emit_if(if_cond, if_body, else_body); Ok(()) } /// Parses and renders a `@for` expression. /// /// The leading `@for` should already be consumed. fn for_expr(&mut self, sp: Span) -> PResult<()> { let mut pattern = vec![]; loop { match *self.input { [keyword!(_, k), ..] if k.is_keyword(keywords::In) => { self.shift(1); break; }, [ref tt, ..] => { self.shift(1); pattern.push(tt.clone()); }, _ => parse_error!(self, sp, "invalid @for"), }} let pattern = self.with_rust_parser(pattern, RustParser::parse_pat)?; let mut iterable = vec![]; let body; loop { match *self.input { [TokenTree::Delimited(sp, ref d), ..] if d.delim == DelimToken::Brace => { self.shift(1); body = self.block(sp, &d.tts)?; break; }, [ref tt, ..] => { self.shift(1); iterable.push(tt.clone()); }, _ => parse_error!(self, sp, "invalid @for"), }} let iterable = self.with_rust_parser(iterable, RustParser::parse_expr)?; self.render.emit_for(pattern, iterable, body); Ok(()) } /// Parses and renders a `@match` expression. /// /// The leading `@match` should already be consumed. fn match_expr(&mut self, sp: Span) -> PResult<()> { // Parse the initial match let mut match_var = vec![]; let match_bodies; loop { match *self.input { [TokenTree::Delimited(sp, ref d), ..] if d.delim == DelimToken::Brace => { self.shift(1); match_bodies = Parser { in_attr: self.in_attr, input: &d.tts, span: sp, render: self.render.fork(), }.match_bodies()?; break; }, [ref tt, ..] => { self.shift(1); match_var.push(tt.clone()); }, [] => parse_error!(self, sp, "expected body for this @match"), }} let match_var = self.with_rust_parser(match_var, RustParser::parse_expr)?; self.render.emit_match(match_var, match_bodies); Ok(()) } fn match_bodies(&mut self) -> PResult<Vec<TokenTree>> { let mut bodies = Vec::new(); loop { match *self.input { [] => break, [ref tt @ comma!(), ..] => { self.shift(1); bodies.push(tt.clone()); }, [TokenTree::Token(sp, _), ..] | [TokenTree::Delimited(sp, _), ..] | [TokenTree::Sequence(sp, _), ..] => { bodies.append(&mut self.match_body(sp)?); }, }} Ok(bodies) } fn match_body(&mut self, sp: Span) -> PResult<Vec<TokenTree>> { let mut body = vec![]; loop { match *self.input { [ref tt @ fat_arrow!(), ..] => { self.shift(1); body.push(tt.clone()); break; }, [ref tt, ..] => { self.shift(1); body.push(tt.clone()); }, _ => parse_error!(self, sp, "invalid @match pattern"), }} let mut expr = Vec::new(); loop { match *self.input { [TokenTree::Delimited(sp, ref d), ..] if d.delim == DelimToken::Brace => { if expr.is_empty() { self.shift(1); expr = self.block(sp, &d.tts)?.to_tokens(self.render.cx); break; } else { self.shift(1); expr.push(TokenTree::Delimited(sp, d.clone())); } }, [comma!(), ..] | [] => { if expr.is_empty() { parse_error!(self, sp, "expected body for this @match arm"); } else { expr = self.block(sp, &expr)?.to_tokens(self.render.cx); break; } }, [ref tt, ..] => { self.shift(1); expr.push(tt.clone()); }, }} body.push(TokenTree::Delimited(sp, Rc::new(Delimited { delim: DelimToken::Brace, open_span: sp, tts: expr, close_span: sp, }))); Ok(body) } /// Parses and renders a `^splice`. /// /// The leading `^` should already be consumed. fn splice(&mut self, sp: Span) -> PResult<P<Expr>> { // First, munch a single token tree let prefix = match *self.input { [ref tt, ..] => { self.shift(1); tt.clone() }, [] => parse_error!(self, sp, "expected expression for this splice"), }; self.splice_with_prefix(prefix) } /// Parses and renders a `^splice`, given a prefix that we've already /// consumed. fn splice_with_prefix(&mut self, prefix: TokenTree) -> PResult<P<Expr>> { let mut tts = vec![prefix]; loop { match *self.input { // Munch attribute lookups e.g. `^person.address.street` [ref dot @ dot!(), ref ident @ ident!(_, _), ..] => { self.shift(2); tts.push(dot.clone()); tts.push(ident.clone()); }, // Munch tuple attribute lookups e.g. `^person.1.2` [ref dot @ dot!(), ref num @ integer!(), ..] => { self.shift(2); tts.push(dot.clone()); tts.push(num.clone()); }, // Munch path lookups e.g. `^some_mod::Struct` [ref sep @ modsep!(), ref ident @ ident!(_, _), ..] => { self.shift(2); tts.push(sep.clone()); tts.push(ident.clone()); }, // Munch function calls `()` and indexing operations `[]` [TokenTree::Delimited(sp, ref d), ..] if d.delim != DelimToken::Brace => { self.shift(1); tts.push(TokenTree::Delimited(sp, d.clone())); }, _ => break, }} self.with_rust_parser(tts, RustParser::parse_expr) } /// Parses and renders an element node. /// /// The element name should already be consumed. fn element(&mut self, sp: Span, name: &str) -> PResult<()> { if self.in_attr { parse_error!(self, sp, "unexpected element, you silly bumpkin"); } self.render.element_open_start(name); self.attrs()?; self.render.element_open_end(); if let [slash!(), ..] = *self.input { self.shift(1); } else { self.markup()?; self.render.element_close(name); } Ok(()) } /// Parses and renders the attributes of an element. fn attrs(&mut self) -> PResult<()> { let mut classes = Vec::new(); let mut ids = Vec::new(); loop { let old_input = self.input; let maybe_name = self.name(); match (maybe_name, self.input) { (Ok(name), &[eq!(), ..]) => { // Non-empty attribute self.shift(1); self.render.attribute_start(&name); { // Parse a value under an attribute context let mut in_attr = true; mem::swap(&mut self.in_attr, &mut in_attr); self.markup()?; mem::swap(&mut self.in_attr, &mut in_attr); } self.render.attribute_end(); }, (Ok(name), &[question!(), ..]) => { // Empty attribute self.shift(1); if let [ref tt @ eq!(), ..] = *self.input { // Toggle the attribute based on a boolean expression self.shift(1); let cond = self.splice(tt.get_span())?; // Silence "unnecessary parentheses" warnings let cond = strip_outer_parens(cond).to_tokens(self.render.cx); let body = { let mut r = self.render.fork(); r.attribute_empty(&name); r.into_stmts() }; self.render.emit_if(cond, body, None); } else { // Write the attribute unconditionally self.render.attribute_empty(&name); } }, (Err(_), &[dot!(), ident!(_, _), ..]) => { // Class shorthand self.shift(1); classes.push(self.name()?); }, (Err(_), &[pound!(), ident!(_, _), ..]) => { // ID shorthand self.shift(1); ids.push(self.name()?); }, _ => { self.input = old_input; break; }, } } if !classes.is_empty() { self.render.attribute_start("class"); self.render.string(&classes.join(" ")); self.render.attribute_end(); } if !ids.is_empty() { self.render.attribute_start("id"); self.render.string(&ids.join(" ")); self.render.attribute_end(); } Ok(()) } /// Parses a HTML element or attribute name. fn name(&mut self) -> PResult<String> { macro_rules! ident_with_minuses { ($name:ident) => ({ self.shift(1); let mut s = String::from(&$name.name.as_str() as &str); while let [minus!(), ident!(_, name), ..] = *self.input { self.shift(2); s.push('-'); s.push_str(&name.name.as_str()); } s }) } let mut s = match *self.input { [ident!(_, name), ..] => ident_with_minuses!(name), _ => return Err(FatalError), }; if let [colon!(), ident!(_, name), ..] = *self.input { self.shift(1); s.push(':'); s.push_str(ident_with_minuses!(name).as_str()); } Ok(s) } /// Parses the given token tree, returning a vector of statements. fn block(&mut self, sp: Span, tts: &[TokenTree]) -> PResult<Vec<Stmt>> { let mut parse = Parser { in_attr: self.in_attr, input: tts, span: sp, render: self.render.fork(), }; parse.markups()?; Ok(parse.into_render().into_stmts()) } } /// Converts a literal to a string. fn lit_to_string(cx: &ExtCtxt, lit: Lit, minus: bool) -> PResult<String> { let mut result = String::new(); if minus { result.push('-'); } match lit.node { LitKind::Str(s, _) => result.push_str(&s), LitKind::ByteStr(..) | LitKind::Byte(..) => { error!(cx, lit.span, "cannot splice binary data"); }, LitKind::Char(c) => result.push(c), LitKind::Int(x, _) => result.push_str(&x.to_string()), LitKind::Float(s, _) | LitKind::FloatUnsuffixed(s) => result.push_str(&s), LitKind::Bool(b) => result.push_str(if b { "true" } else { "false" }), }; Ok(result) } /// If the expression is wrapped in parentheses, strip them off. fn strip_outer_parens(expr: P<Expr>) -> P<Expr> { expr.and_then(|expr| match expr { Expr { node: ExprKind::Paren(inner), .. } => inner, expr => P(expr), }) }