maud/maud_macros/src/parse.rs
2017-06-03 12:42:36 +12:00

564 lines
20 KiB
Rust

use std::mem;
use syntax::ast::LitKind;
use syntax::codemap::Span;
use syntax::ext::base::ExtCtxt;
use syntax::parse;
use syntax::parse::token::{BinOpToken, DelimToken, Token};
use syntax::print::pprust;
use syntax::symbol::keywords;
use syntax::tokenstream::{Delimited, TokenStream, TokenTree};
use super::render::Renderer;
use super::ParseResult;
macro_rules! at {
() => (TokenTree::Token(_, Token::At))
}
macro_rules! dot {
() => (TokenTree::Token(_, Token::Dot))
}
macro_rules! eq {
() => (TokenTree::Token(_, Token::Eq))
}
macro_rules! pound {
() => (TokenTree::Token(_, Token::Pound))
}
macro_rules! question {
() => (TokenTree::Token(_, Token::Question))
}
macro_rules! semi {
() => (TokenTree::Token(_, Token::Semi))
}
macro_rules! colon {
() => (TokenTree::Token(_, Token::Colon))
}
macro_rules! comma {
() => (TokenTree::Token(_, Token::Comma))
}
macro_rules! fat_arrow {
() => (TokenTree::Token(_, Token::FatArrow))
}
macro_rules! minus {
() => (TokenTree::Token(_, Token::BinOp(BinOpToken::Minus)))
}
macro_rules! slash {
() => (TokenTree::Token(_, Token::BinOp(BinOpToken::Slash)))
}
macro_rules! literal {
() => (TokenTree::Token(_, Token::Literal(..)))
}
macro_rules! ident {
($sp:pat, $x:pat) => (TokenTree::Token($sp, Token::Ident($x)))
}
macro_rules! keyword {
($sp:pat, $x:ident) => (TokenTree::Token($sp, ref $x @ Token::Ident(..)))
}
pub fn parse(cx: &ExtCtxt, sp: Span, input: &[TokenTree]) -> ParseResult<Vec<TokenTree>> {
let mut render = Renderer::new(cx);
Parser {
cx,
in_attr: false,
input: input,
span: sp,
}.markups(&mut render)?;
// Heuristic: the size of the resulting markup tends to correlate with the
// code size of the template itself
let size_hint = pprust::tts_to_string(input).len();
Ok(render.into_expr(size_hint).into_trees().collect())
}
struct Parser<'cx, 'a: 'cx, 'i> {
cx: &'cx ExtCtxt<'a>,
in_attr: bool,
input: &'i [TokenTree],
span: Span,
}
impl<'cx, 'a, 'i> Parser<'cx, 'a, 'i> {
/// Consumes `n` items from the input.
fn shift(&mut self, n: usize) {
self.input = &self.input[n..];
}
/// Attaches an error message to the span and returns `Err`.
fn error<T>(&self, span: Span, message: &str) -> ParseResult<T> {
self.cx.span_err(span, message);
Err(())
}
/// Parses and renders multiple blocks of markup.
fn markups(&mut self, render: &mut Renderer) -> ParseResult<()> {
loop {
match *self.input {
[] => return Ok(()),
[semi!(), ..] => self.shift(1),
[_, ..] => self.markup(render)?,
}
}
}
/// Parses and renders a single block of markup.
fn markup(&mut self, render: &mut Renderer) -> ParseResult<()> {
match *self.input {
// Literal
[ref tt @ literal!(), ..] => {
self.shift(1);
self.literal(tt, render)?;
},
// If
[at!(), keyword!(sp, k), ..] if k.is_keyword(keywords::If) => {
self.shift(2);
self.if_expr(sp, render)?;
},
// While
[at!(), keyword!(sp, k), ..] if k.is_keyword(keywords::While) => {
self.shift(2);
self.while_expr(sp, render)?;
},
// For
[at!(), keyword!(sp, k), ..] if k.is_keyword(keywords::For) => {
self.shift(2);
self.for_expr(sp, render)?;
},
// Match
[at!(), keyword!(sp, k), ..] if k.is_keyword(keywords::Match) => {
self.shift(2);
self.match_expr(sp, render)?;
},
// Let
[at!(), keyword!(sp, k), ..] if k.is_keyword(keywords::Let) => {
self.shift(2);
self.let_expr(sp, render)?;
}
// Element
[ident!(sp, _), ..] => {
let name = self.namespaced_name().unwrap();
self.element(sp, &name, render)?;
},
// Splice
[TokenTree::Delimited(_, ref d), ..] if d.delim == DelimToken::Paren => {
self.shift(1);
render.splice(d.stream());
}
// Block
[TokenTree::Delimited(sp, ref d), ..] if d.delim == DelimToken::Brace => {
self.shift(1);
Parser {
cx: self.cx,
in_attr: self.in_attr,
input: &d.stream().into_trees().collect::<Vec<_>>(),
span: sp,
}.markups(render)?;
},
// ???
_ => {
if let [ref tt, ..] = *self.input {
return self.error(tt.span(), "invalid syntax");
} else {
return self.error(self.span, "unexpected end of block");
}
},
}
Ok(())
}
/// Parses and renders a literal string.
fn literal(&mut self, tt: &TokenTree, render: &mut Renderer) -> ParseResult<()> {
let mut rust_parser = parse::stream_to_parser(self.cx.parse_sess, tt.clone().into());
let lit = rust_parser.parse_lit().map_err(|mut e| e.emit())?;
if let LitKind::Str(s, _) = lit.node {
render.string(&s.as_str());
Ok(())
} else {
return self.error(lit.span, "literal strings must be surrounded by quotes (\"like this\")")
}
}
/// Parses and renders an `@if` expression.
///
/// The leading `@if` should already be consumed.
fn if_expr(&mut self, sp: Span, render: &mut Renderer) -> ParseResult<()> {
// Parse the initial if
let mut if_cond = vec![];
let if_body;
loop { match *self.input {
[TokenTree::Delimited(sp, ref d), ..] if d.delim == DelimToken::Brace => {
self.shift(1);
if_body = self.block(sp, d.stream(), render)?;
break;
},
[ref tt, ..] => {
self.shift(1);
if_cond.push(tt.clone());
},
[] => return self.error(sp, "expected body for this @if"),
}}
// Parse the (optional) @else
let else_body = match *self.input {
[at!(), keyword!(_, k), ..] if k.is_keyword(keywords::Else) => {
self.shift(2);
match *self.input {
[keyword!(sp, k), ..] if k.is_keyword(keywords::If) => {
self.shift(1);
let mut render = render.fork();
self.if_expr(sp, &mut render)?;
Some(render.into_stmts())
},
[TokenTree::Delimited(sp, ref d), ..] if d.delim == DelimToken::Brace => {
self.shift(1);
Some(self.block(sp, d.stream(), render)?)
},
_ => return self.error(sp, "expected body for this @else"),
}
},
_ => None,
};
render.emit_if(if_cond.into_iter().collect(), if_body, else_body);
Ok(())
}
/// Parses and renders an `@while` expression.
///
/// The leading `@while` should already be consumed.
fn while_expr(&mut self, sp: Span, render: &mut Renderer) -> ParseResult<()> {
let mut cond = vec![];
let body;
loop { match *self.input {
[TokenTree::Delimited(sp, ref d), ..] if d.delim == DelimToken::Brace => {
self.shift(1);
body = self.block(sp, d.stream(), render)?;
break;
},
[ref tt, ..] => {
self.shift(1);
cond.push(tt.clone());
},
[] => return self.error(sp, "expected body for this @while"),
}}
render.emit_while(cond.into_iter().collect(), body);
Ok(())
}
/// Parses and renders a `@for` expression.
///
/// The leading `@for` should already be consumed.
fn for_expr(&mut self, sp: Span, render: &mut Renderer) -> ParseResult<()> {
let mut pattern = vec![];
loop { match *self.input {
[keyword!(_, k), ..] if k.is_keyword(keywords::In) => {
self.shift(1);
break;
},
[ref tt, ..] => {
self.shift(1);
pattern.push(tt.clone());
},
_ => return self.error(sp, "invalid @for"),
}}
let mut iterable = vec![];
let body;
loop { match *self.input {
[TokenTree::Delimited(sp, ref d), ..] if d.delim == DelimToken::Brace => {
self.shift(1);
body = self.block(sp, d.stream(), render)?;
break;
},
[ref tt, ..] => {
self.shift(1);
iterable.push(tt.clone());
},
_ => return self.error(sp, "invalid @for"),
}}
render.emit_for(pattern.into_iter().collect(), iterable.into_iter().collect(), body);
Ok(())
}
/// Parses and renders a `@match` expression.
///
/// The leading `@match` should already be consumed.
fn match_expr(&mut self, sp: Span, render: &mut Renderer) -> ParseResult<()> {
// Parse the initial match
let mut match_var = vec![];
let match_bodies;
loop { match *self.input {
[TokenTree::Delimited(sp, ref d), ..] if d.delim == DelimToken::Brace => {
self.shift(1);
match_bodies = Parser {
cx: self.cx,
in_attr: self.in_attr,
input: &d.stream().into_trees().collect::<Vec<_>>(),
span: sp,
}.match_bodies(render)?;
break;
},
[ref tt, ..] => {
self.shift(1);
match_var.push(tt.clone());
},
[] => return self.error(sp, "expected body for this @match"),
}}
render.emit_match(match_var.into_iter().collect(), match_bodies.into_iter().collect());
Ok(())
}
fn match_bodies(&mut self, render: &mut Renderer) -> ParseResult<Vec<TokenTree>> {
let mut bodies = Vec::new();
loop { match *self.input {
[] => break,
[ref tt @ comma!(), ..] => {
self.shift(1);
bodies.push(tt.clone());
},
[ref tt, ..] => bodies.append(&mut self.match_body(tt.span(), render)?),
}}
Ok(bodies)
}
fn match_body(&mut self, sp: Span, render: &mut Renderer) -> ParseResult<Vec<TokenTree>> {
let mut body = vec![];
loop { match *self.input {
[ref tt @ fat_arrow!(), ..] => {
self.shift(1);
body.push(tt.clone());
break;
},
[ref tt, ..] => {
self.shift(1);
body.push(tt.clone());
},
_ => return self.error(sp, "invalid @match pattern"),
}}
let mut expr = Vec::new();
loop { match *self.input {
[TokenTree::Delimited(sp, ref d), ..] if d.delim == DelimToken::Brace => {
if expr.is_empty() {
self.shift(1);
expr = self.block(sp, d.stream(), render)?.into_trees().collect();
break;
} else {
self.shift(1);
expr.push(TokenTree::Delimited(sp, d.clone()));
}
},
[comma!(), ..] | [] => {
if expr.is_empty() {
return self.error(sp, "expected body for this @match arm");
} else {
expr = self.block(sp, expr.into_iter().collect(), render)?.into_trees().collect();
break;
}
},
[ref tt, ..] => {
self.shift(1);
expr.push(tt.clone());
},
}}
body.push(TokenTree::Delimited(sp, Delimited {
delim: DelimToken::Brace,
tts: expr.into_iter().collect::<TokenStream>().into(),
}));
Ok(body)
}
/// Parses and renders a `@let` expression.
///
/// The leading `@let` should already be consumed.
fn let_expr(&mut self, sp: Span, render: &mut Renderer) -> ParseResult<()> {
let mut pattern = vec![];
loop { match *self.input {
[eq!(), ..] => {
self.shift(1);
break;
},
[ref tt, ..] => {
self.shift(1);
pattern.push(tt.clone());
},
_ => return self.error(sp, "invalid @let"),
}}
let mut rhs = vec![];
let body;
loop { match *self.input {
[TokenTree::Delimited(sp, ref d), ..] if d.delim == DelimToken::Brace => {
self.shift(1);
body = self.block(sp, d.stream(), render)?;
break;
},
[ref tt, ..] => {
self.shift(1);
rhs.push(tt.clone());
},
_ => return self.error(sp, "invalid @let"),
}}
render.emit_let(pattern.into_iter().collect(), rhs.into_iter().collect(), body);
Ok(())
}
/// Parses and renders an element node.
///
/// The element name should already be consumed.
fn element(&mut self, sp: Span, name: &str, render: &mut Renderer) -> ParseResult<()> {
if self.in_attr {
return self.error(sp, "unexpected element, you silly bumpkin");
}
render.element_open_start(name);
self.attrs(render)?;
render.element_open_end();
if let [slash!(), ..] = *self.input {
self.shift(1);
} else {
self.markup(render)?;
render.element_close(name);
}
Ok(())
}
/// Parses and renders the attributes of an element.
fn attrs(&mut self, render: &mut Renderer) -> ParseResult<()> {
let mut classes_static = Vec::new();
let mut classes_toggled = Vec::new();
let mut ids = Vec::new();
loop {
let old_input = self.input;
let maybe_name = self.namespaced_name();
match (maybe_name, self.input) {
(Ok(name), &[eq!(), ..]) => {
// Non-empty attribute
self.shift(1);
render.attribute_start(&name);
{
// Parse a value under an attribute context
let mut in_attr = true;
mem::swap(&mut self.in_attr, &mut in_attr);
self.markup(render)?;
mem::swap(&mut self.in_attr, &mut in_attr);
}
render.attribute_end();
},
(Ok(name), &[question!(), ..]) => {
// Empty attribute
self.shift(1);
match *self.input {
[TokenTree::Delimited(_, ref d), ..] if d.delim == DelimToken::Bracket => {
// Toggle the attribute based on a boolean expression
self.shift(1);
let cond = d.stream();
let body = {
let mut render = render.fork();
render.attribute_empty(&name);
render.into_stmts()
};
render.emit_if(cond, body, None);
},
_ => {
// Write the attribute unconditionally
render.attribute_empty(&name);
},
}
},
(Err(_), &[dot!(), ident!(_, _), ..]) => {
// Class shorthand
self.shift(1);
let class_name = self.name().unwrap();
match *self.input {
[TokenTree::Delimited(_, ref d), ..] if d.delim == DelimToken::Bracket => {
// Toggle the class based on a boolean expression
self.shift(1);
let cond = d.stream();
classes_toggled.push((cond, class_name));
},
// Emit the class unconditionally
_ => classes_static.push(class_name),
}
},
(Err(_), &[pound!(), ident!(_, _), ..]) => {
// ID shorthand
self.shift(1);
ids.push(self.name().unwrap());
},
_ => {
self.input = old_input;
break;
},
}
}
if !classes_static.is_empty() || !classes_toggled.is_empty() {
render.attribute_start("class");
render.string(&classes_static.join(" "));
for (i, (cond, mut class_name)) in classes_toggled.into_iter().enumerate() {
// If a class comes first in the list, then it shouldn't be
// prefixed by a space
if i > 0 || !classes_static.is_empty() {
class_name = format!(" {}", class_name);
}
let body = {
let mut render = render.fork();
render.string(&class_name);
render.into_stmts()
};
render.emit_if(cond, body, None);
}
render.attribute_end();
}
if !ids.is_empty() {
render.attribute_start("id");
render.string(&ids.join(" "));
render.attribute_end();
}
Ok(())
}
/// Parses an identifier, without dealing with namespaces.
fn name(&mut self) -> ParseResult<String> {
let mut s = match *self.input {
[ident!(_, name), ..] => {
self.shift(1);
String::from(&name.name.as_str() as &str)
},
_ => return Err(()),
};
let mut expect_ident = false;
loop {
expect_ident = match *self.input {
[minus!(), ..] => {
self.shift(1);
s.push('-');
true
},
[ident!(_, name), ..] if expect_ident => {
self.shift(1);
s.push_str(&name.name.as_str());
false
},
_ => break,
};
}
Ok(s)
}
/// Parses a HTML element or attribute name, along with a namespace
/// if necessary.
fn namespaced_name(&mut self) -> ParseResult<String> {
let mut s = self.name()?;
if let [colon!(), ident!(_, _), ..] = *self.input {
self.shift(1);
s.push(':');
s.push_str(&self.name().unwrap());
}
Ok(s)
}
/// Parses the given token tree, returning a vector of statements.
fn block(&mut self, sp: Span, tts: TokenStream, render: &mut Renderer) -> ParseResult<TokenStream> {
let mut render = render.fork();
let mut parse = Parser {
cx: self.cx,
in_attr: self.in_attr,
input: &tts.into_trees().collect::<Vec<_>>(),
span: sp,
};
parse.markups(&mut render)?;
Ok(render.into_stmts())
}
}